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INTRODUCTION

This research involves the development, implementation and optimization of
algorithms for tracking the spectral spin frequency representations of a
revolving cylindrical target having four protruding scatterers. The
investigation is limited to coherent phase and amplitude data that are constant
to within a few millimeters per second with respect to the base of the
cylinder, spin frequencies between five and fifteen Hertz (Hz), and an absolute
spin frequency rate of change less than 1.25 Hz per second. The research vas
conducted such that the algorithms and procedures that were developed could be
performed by analysts who are relatively unskilled in this analysis. The
heuristic methodology utilized in this effort is one wherein a working model of
the expert analyst”s problem-solving approach is obtained by observing him
perform the manual procedure, generating the associated protocols, and then
programming this intelligence into the machine. The manual procedure was easy
to understand and to implement in the machine.

THEORY

In the coherent doppler processing of radar data from targets with multiple
scattering centers, a frequently used method for information display is the
doppler history plot. In this plot, the doppler content of the signal, i.e.,
the velocities of the various scattering centers relative to the radar are
displayed as a function of time. The plot is generated by moving a window of
predetermined size through the amplitude and phase dats, at an appropriate lag,
and mapping the contents of each window into the spectral domain. Next the
spectra are sequentially plotted, equispaced, one behind the other, using
hidden line plotting techniques. Figure 1 shows an example of a typical
doppler history plot.[1]

In this plot, each peak”s location in the frequency spectrum is directly
proportional to the average relative velocity of the scattering center it
represents. A peak in the positive portion of the spectrum represents a
scattering center moving towards the radar, while a peak in the negative
portion represents a scattering center moving away from the radar. Radial
velocities corresponding to the spectral frequencies are shown in meters per
second in the bottom scale. The relationship between radial velocity and
doppler frequency is directly proportional to the wavelength of the radar, as
seen in Equation 1.

R = A/2f (1)

vhere R = radial velocity (m/sec)
A = radar wavelength (m)
fq = doppler frequency

If a scattering center has an associated velocity too large to be represented
on one side of a spectrum & velocity ambiguity occurs and the peak
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representation appears vrapped around to the other side of the spectrum. This

. particular effect is classically known as "aliasing,” and occurs when the
; Nyquist criterion is not wet, i.e., when the sampling rate is less than twice
_{ the highest frequency component present in the data.
N
L}
' The first twvo steps in the investigation involve associating the velocity
' information in the doppler history plot with the spin frequencies of the
i subject target, and then determining the variation of doppler processing which
2 best displays the spin frequency content for subsequent tracking. The first
“ step is achieved by examining the scattering center orientation of the target,
) with respect to the radar line of sight. The second step requires examination
" of long-term Fourier transforms, those encompassing sevfrfl cycles of spin,
vhich bring up the FM sidebands of the spin modulation.(2
b Exsmination of target scattering center orientation began with the analysis of
N Figure 2.
: As shown, the four scattering centers that produce spin frequency effects in
& the doppler history plot are symmetrically located with respect to the axis of
the cylinder. Dominance of the spectral spin information is due to the
.. relatively long distance they extend out from the cylinder, as opposed to any
- other scatterers which may exist near the surface. Since this distance and the
N carrier frequency are constant, the spin doppler excursion is determined by the
1y target aspect angle, 2. As shown in Figure 3, Q, which varies between O and 90
X degrees, is defined to be the angle between the radar line of sight and the
spin axis of the target. The mathematical relationship for the excursion of
. spin doppler is expressed in Equation 2.
: af
" Af = 4Nf_ —= sin Q (2)
S C
ﬂ vhere
f Af = excursion of spin doppler
D f_ = spin frequency
d = distance from spin axis to scatterers
€. = carrier frequency
c = speed of light
. 2 = angle between radar line of sight and spin axis
) Equation 2 shows that spin doppler varies sinusoidally from O when .. = 07,
: i.e., the radar line of sight is aligned with the axis of the target, to a
maximum when . = 90°,i.e., the radar line of sight is perpendicular to the axis
;
-
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of the target. Alternately, this information can be expressed in terms of the
modulation index, ¢, as shown in Equation 3.

=2

. £
B = — = 4lI&-= sin 9 (3)
fs o]

The modulation index also increases as  tends toward 90°, thus placing more of
the power into the FM sidebands of the spin information. However, due to the
four-fold symmetry of the scatterers, only multiples of four times the spin
frequency appear in the sidebands, as opposing doppler returns from the
symmetric scatterers usually cause cancellation of all intermediate returms.

The next step in the research involved examination of long-term Fourier
transforms, those encompassing several cycles of spin, in order to develop a
reasonable display of the sidebands present. This effort began by considering
the situation depicted in Figure 4a. Here, a single scattering center is shown
spinning abo%t its tip, with the radar line of sight in the plan of rotationm,
i.e., ! =90",

Next, Figure 4b was developed, depicting representative spectral information
that would be received by the radar in this case. The left-hand side of Figure
4b shows a doppler history plot emcompassing two cycles of this target”’s spin,
where a very narrow transform window would need to have been used for near
instantaneous frequency representation. The right-hand side of Figure 4b shows
the corresponding single spectrum contents of windows, which contain a negative
half cycle, a full cycle, and a positive half cycle of spin, from top to
bottom, respectively. This figure indicates that only a transform window,
encompassing at least a full cycle of spin, can contain all the FM sidebands of
spin modulation.

As a proof of this indicstion, doppler histories were generated from typical
amplitude and phase data from the subject target for Fourier transform windows
encompassing 1/5, 2/5, 4/5, 8/5, 16/5, and 32/5 cycles of spin. These doppler
histories are displayed in Figures 5 through 10, respectively. Inspection of
these doppler histories gave evidence of the spin sideband tendency to settle
into a single spectrum as the transform window approaches a full cycle of spin.
Further, as the transform window expands to encompass several cycles of spin,
fewer sidebands are lost due to temporary destructive interference; and their
representations sharpen, due to the increased number of points in the window.
This effect allows for more precise mgnual frequency determinationm.

Two other points are worthy of note in Figures 5 through 10. First, the total
normalized power in each of the spectra is equal, as was the case in Figure 4b
between the 1/2 cycle and full cycle spectral displays. Therefore, increasing
the length of the Fourier transform window has no effect on the total
normalized power in each spectrum, but rather on how the power is distributed,
i.e., according to the spectral content. Second, the lag used in moving the
transform window through the data was equal to the length of the transform
window. This implies uncorrelated spectra, i.e., no common time domain data is
used in the production of previous or successive spectra. Figure 1l is
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equivalent to Figure 10, except that each adjacent pair of spectra is
correlated. Using a lag of 1/2 the size of the transform window, each spectrum
is computed with 1/2 of the time domsin data used to compute each of its
adjacent neighbors. Correlated spectra is frequently produced in doppler
history displays to achieve the effect of smearing the spectral peaks as a
function of time, thus leaving traces of scattering center velocities which are
more pleasing to the human eye.

For the subject target, the number of points in each transform window was
chosen to be 256, so as to encompass at least four cycles of spin and to give
ressonably sharp spin traces. Production of noncorrelated spectra, i.e., lag
equal to 256, was chosen for subsequent tracking, as the human eye was not
intended to be part of the automated process; and also in that this reduces the
computational workload. It was noted that reduction of a given lag, by a
factor of two, doubles the number of spectra that must be produced and
subsequently handled. A lag greater than the transform window would further
reduce the computational workload; but this was determined unfeasible, as
information would be lost in the doppler display.

As noted in the introduction, the phase and amplitude data that are used are
constant to within & few millimeters per second, or normalized with respect to
the base of the cylindrical target. Unfortunately, the relatively large
smplitude of the base return frequently causes spin returns not to be seen in
the normalized doppler history display. Therefore, for the spin doppler
history displays presented in this paper, the base return has been filtered out
of each spectrum after normalization, in order to bring up the sidebands of the
spin modulation.[3]

TRACKING PROBLEMS AND THE MANUAL TRACKING PROCEDURE

This research has identified four classes of problems in the doppler history
data which have, to date, inhibited the development of an automated process for
tracking spin frequencies. These problems, which may occur in any combination,

are:

e Noise, used here in a general context to describe
both random noise and undesired clutter returns.

e Periodic fading or cancellation of spin frequency
returns.

o Wraparound or aliasing of the higher spin frequency
multiples.

¢ Crossover of nonwrapped and wrapped spin returns.

For testing of automated spin line tracking algorithms to be developed, three
sets of data wvere selected which exhibit various combinations and intensities
of all four classes of problems. Data Set 1, shown in Figure 12, exhibits
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fading and spin multiple crossover in a severe noise environment. Noise, as
illustrated in this figure, may sppear at any frequency, singularly or in
clusters, and with amplitudes often larger than those of the spin returns.
Data Set 2, shown in Figure 13, illustrates an example of severe fading and
cancellation of spin frequency returns while in a relatively low noise
environment. Such fading is due to variation in radar orientation (target’s
aspect angle) and destructive interference from other returns. Data Set 3,
shown in Figure 14, exhibits very prominent higher spin multiples, which alias
and make distinction difficult at points where they cross over lower spin
multiples. Another problem is an occasional strong 60 Hertz line caused by
interference; hovever it was considered too rare to be included as another main
class problem.

The first step in the development of an automated spin frequency tracker was to
observe a skilled analyst while performing such a data reduction. The
following steps describe the procedure obtained from these observations.

1. A doppler history plot is generated with the following characteristics:

a. A transform window, large enough to produce reasonably sharp spin
traces,

b. A lag, half the size of the transform window, to produce smearing of
the spectral peaks.

c. High pass filtering, to remove the relatively large base
representation.

2. Next, traces of spin frequeacy multiples in the doppler history plot
are identified and marked. These multiples are denoted as mfs where f. is the
spin frequency and, m = :4, +8, +12, ..... Here again, it is noted that,
generally, only multiples of 4fg are present.

3. Omn a spectrum-by-spectrum basis, the largest mf., which can be
identified and is not aliased, is then selected for tracking. The spin history
is then calculated by measuring the zero doppler offset of these multiples,
dividing by the corresponding multiple, and recording the results as a function
of time.

In identifying the spin frequency traces, the analyst utilized the apriori
knowledge that the actual spin frequency will be between 5 and 15 Hz, with rare
exception. Using this information the analyst identifies the 4f; multiple as
the lowest spin frequency trace in the interval 20 Hz to 60 Hz. The -4f
multiple is identified in a similar manner. Higher multiples are subsequently
identified by searching in the area of the appropriate doppler offset for that
multiple. For example, if the 4f; trace was located at approximately 20 Hz,
the 8f; multiple would be searched for around 40 Hz, the 12f_ multiple at
around 60 Hz, and so forth. Since the error in frequency measurement for
identifiable multiples is approximately equal, selection of the highest
multiple minimizes error in the calculated spin frequency as the measurement is
divided by that multiple. Aliased multiples are not considered, due to their
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generally lower relative amplitude, and due to the additional constast that
must be included in the calculations. When fading occurs, the next lower,
identifiable multiple is selected for tracking. When higher multiples alias
and crossover traces currently being tracked, the analyst has the advantage of
following the general trend of the trace under track and, thus, usually avoids
confusion between spin representationa. In cases where no spin multiples are
identifiable due to nmoise and/or fading the analyst usually interpolates these
areas with the values of previously and successively tracked spin frequencies.
Noting that such measurements and calculations are very labor intensive on a
spectrum-by~spectrum basis for long periods of track, the analyst will
frequently make measurements only on every third or fifth spectrum and
interpolate the others as long as the data are relatively clean and this can be
done without loss of continuity or track. Obviously this is not always the
case due to the tracking problems that are involved. Figure 15 illustrates the
manual analysis where only three spin frequencies have been calculated.

INITIAL TRACKING PROCEDURES

As an adjunct to observing the skilled analyst perform the manual tracking
process, work on a similar problem by graduate students at the Cognitive System
Laboratory, University of California at Los Angeles (UCLA) was also reviewed.
In this work spin doppler returns from a similar target were simulated in order
to develop like tracking algorithms. These algorithms were developed on the
basis of two fundamental assumptions.

First, a given candidate spin representation in a particular positive half
spectrum should have a like representation in the negative half spectrum.
Second, an algorithm should be able to locate, in previous and successive
spectra, similar candidate returns which follow a particular spin frequency
trend. Therefore positive frequency trends should be correlatable with their
counter representations in the respective negative half spectrum. This process
started with a Monte Carlo type simulation, where positive and negative spin
frequency representations were generated and then combined, constructively and
destructively, with randomly generated noise, and used as the basis to compute
the doppler power spectra. Next, the tracking algorithms would, for each
spectrum, select symmetrically located peaks as candidate spin frequency
returns. Previous and successive spectra would then be examined, to determine
if the candidate returns fit within candidate spin frequency trends. Those
candidate returns which did not fit would then be eliminated. Finally, the
chosen spin frequency trends would be selected, using the apriori knowledge
that they should be multiples of four times the fundamental spin frequency and
should last, for the most part, for the duration of the data, i.e., short
spurious trends would be eliminated. The spin frequency as a function of time
would then be calculated from these trends.

This process proved difficult to implement on available computational hardware,
slow in terms of total execution time, and usually failed to obtain the correct
spin frequencies when applied to real data. Processing equipment used for the
implementation was a Digital Equipment Corporation PDP-11/55 with floating point
hardware, 256 kilobytes of memory, s 176 megabyte storage disk, 128 kilobytes
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of fast access disk emulator storage, an array processor which had not been
implemented in software, 7 and 9 track magnetic tape capabilities, and a
graphics terminal with hard copy. The first problem in the hardware
implementation of the process was the limited memory available for the doppler
history data which the algorithms operated upon. Since the fast access disk
emulator storage was too limited to contain all of the data, it was necessary
to store it on the substantially slower disk, and frequently swap small
portions of it in and out of main memory as the processing algorithms required
them. This continuous swapping, in addition to the time required for
processing of the algorithms and the time needed to conformally map the data to
the spectral domain, further made the entire process intollerably slow. The
major drawback of the process, however, was the frequent failure to obtain the
proper spin frequencies. Intensive manual analysis of the process and results
showed the failures to be primarily due to the assumption that candidate spin
returns will appear symmetrically about zero doppler. In the simulations
conducted at UCLA, this was not a problem as the simulated doppler histories
were produced noncoherently, thus insuring symmetric representations. For the
real data used in this application, however, such was not the case as it is
processed coherently. Attempts to modify the process and remove the symmetry
requirements of candidate spin representations showed insufficient improvement
in proper spin frequency identification.

While the process developed at UCLA appeared inadequate for the problem at
hand, it did demonstrate that available memory and speed of conformal mapping
were problems to be reckoned with. Indeed, any tracking algorithms developed
would need conformally mapped data to operate on, as well as a place to store
it. In order to speed up the mapping process, implementation of the array
processor was investigated. The result of the effort was the development of
software which performed Fast Fourier Transformations (FFT) through a series of
subsequent calls to array processor subroutines. The software also used the
array processor to compute the doppler power spectrum. This software is listed
in Appendix A as subroutine FFT2., While benchmark speed tests of the software
showed that, after initialization, the array processor performed the required
function more than 25 times as fast as the main processor, there were still
additional drawbacks associated with its use. The first drawback was the 16
kilobyte main memory requirement for array processor software storage. The
second drawback was the fact that if the software was swapped out of main
memory or windowed out of the 64 kilobyte execution window in main memory, the
array processor would need to be reinitialized before its next use. This was a
major problem in that initialization, along with the performance of only onme
FFT by the array processor, took three times as long as performance of the same
operation by the main processor. In other words, the advantage of using the
array processor lies only in the performance of many operations between
initializations. Thus, utilization of the array processor for increased
conformal mapping speed placed even greater restrictions on already inadequate
executable memory. It is worthy of note that a 16 bit processor such as the
PDP-11/55 has an instantaneous execution window of only 21" or 65,536 bytes of
main memory. Further, while memory mapping allows this segment to be split
into as many as eight subelements anywhere within the 256 kilobyte total
allocation at any one time, the subelements must be multiples of 4096.
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This, then, defines the upper subelement, array processor memory requirement of
16 kilobytes, where a kilobyte is defined to be 2!0 or 1024 bytes.

With even more stringent requirements placed upon available main memory, due to
array processor overhead, emphasis at this stage of the research was placed
upon requirements for storage of doppler history data. While review of
procedures used at UCLA to obtain spin frequencies showed little promise of
solving this problem, a 1ook st the msnual preanalysis normalization proved to
be of great value. The process first involved precise doppler alignment, to
vithin a fev millimeters per second, of the subject target’s base. Next,
because of the relatively large amplitude of the base returm to that of the
fins, the spectra were high pass filtered, to remove base effects and bring up
spin representations, for easier idemtification in tracking. At this poimt it
wvas noted, vhile observing the analyst perform the manual tracking procedure,
that the spin representations often had the largest amplitude. Utilizing this
information, it was decided to try storing only a small number of the largest
remaining returns in each spectrum as an information base of candidate spin
returns. First, each spectrum was further high pass filtered, up to the
minimum ‘4 f5 requirement in this effort, i.e., *4 f5 min = x4 x 5 Hz = -20 Hz,
This had the effect of removing any additionsl undesired returns of large
smplitude in this interval from consideration. Next, thirty was chosen as the
number of peaks with largest amplitudes to be considered as candidate spin
returns in each spectrum. Thirty was chosen simply as a worst case guess,
based on observation of data at hand. However, after analysis of candidate
peak selections for different sets of data, it was discovered that many
candidates often described the same peak. This was primarily due to the fact
that the pesks were not of infinitesimal width. Consider Figure 16, selection
of candidate spin returns, which denotes (as circled) the five largest
amplitudes of twenty. While these points indeed represent the largest
amplitudes, in reality the dominant peaks are those indicated by vertical
arrows. After only short-term manual analysis, the solution to the problem
appeared obvious. The peaks represent points at which the slope changes from
positive to negative with left to right taken as a positive direction.
Utilizing this fact, points of positive-to-negative slope change are first
selected as precandidate spin returns. In the case of Figure 16, element
numbers 3. 7, 9, 11, 14 and 18 would be chosen. The largest of these would
then be chosen as candidate spin returms. Again, in the case of Figure 16,
this would correspond to elements 3, 7, 11, 14, and 18 for the five largest
elements. Further, trials of this algorithm were then rum on the data
selected, with analysis of results showing tbat (in general) selection of omly
the 16 largest peaks gave rise to a sufficient candidate peak base for
subsequent tracking. Storing only the amplitude and location of 16 points for
each spectrum reduced storage requirements by 97 percent and allowed the
utilization of only wmain memory, as opposed to main memory and the slow access
wass storage media. The selection of 16 points per spectrum is based on the
following assumptions:

e Try to keep the data base small without losing too much
information on the spin frequency lines.

e Try to reduce the number of noise peaks in the data base.

K L s

2

.
8.
-
>




After reviewing several sets of data it was found that, usually, the maximum
unwrapped multiple is the *16 f.; however, not every multiple shows in each
spectrum. Therefore, 16 points per spectrum proved to be a reasonable tradeoff
between information content and memory restrictions.

In order to further reduce the congestion of main processor memory, it was
decided to make this portion of the process separate from the actual spin
frequency tracking and computation. This had the advantage of removing the
overhead software that would need to be stored in main memory to concatenate
the two processes, and allowed for the independent creation (from raw data) of
data bases to which tracking a spin frequency computation algorithms could be
applied. The complete software development to perform this process is listed
in Appendix A as main routine PEAKS1, with associated subroutines FFT2, PICK,
SORTAG. Also included in this process is subroutine CONVER, which will be
described later, at the point of its development in this research.

AUTOMATIC TRACKING ALGORITHM DEV ELOPMENT

With the establishment of a satisfactory data base, the next step in the
research was to develop tracking algorithms which duplicated the expert
analyst’s approach. The expert analyst, however, has the advantage of being
able to visually locate the spin frequency traces while surveying the entire
doppler history plot. Working with a considerably more limited data base, this
luxury was not available. Therefore a method had to be devised which would
properly provide initial frequency identification.

Initially, the first spectrum was simply searched for the return of largest
amplitude and its location assigned to the 4fs spin multiple. This selection
was based on the assumptions that, generally, only multiples of 4fs would be
contained in the data base, with tlose in the lower portion of the spectrum
containing the most power. Trial runs on real data were then made to check the
frequency selections. Results showed that, except in cases of very clean data,
undesired returns were often selected due to clutter and spin return fading in
the spectrum. In order to compensate for the problem it was decided to make
the program interactive and query the user. The selected return and its
location are presented to the user, along with the query, if it corresponds to
any spin multiple. If the user response is positive, then he is asked to enter
the corresponding multiple. If the user response is negative, then he is asked
to calculate and enter the initial frequency.

Once a method of obtaining the initial spin frequency was established, the
actual tracking algorithm development began. The location in the first
spectrum of the 16f; multiple is computed and the location of each of the
eight candidates for that spectrum is checked for a match, to within *2 Hz. If
no match is found, the location of the -16f5 multiple is checked for a match,
and 8o on, successively utilizing the +l2fs, -12fg, +8fg5, -8f;, +4f,, -4f;
locations, until a match is found. Once a match is found, the spin frequency
for that period is computed by dividing the location of the multiple by that
multiple. Higher multiples that do not alias are searched first, since for a
constant error in actual peak location division of a spin multiple by a higher
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multiple minimizes spin frequemcy error. The 4 Rz window, used for the search,
wvas chosen as the basis of careful hand analysis of doppler history data. This
window generally seemed wide enmough to accommodate for rate of change of spin
frequency vhen used in conjunction with extrapolation techniques, and still
minimize the presence of unwanted returns in the window. The candidate search
frequency for the second window is taken to be the same as for the first, while
the candidste search frequency for the third spectrum is a linear extrapolation
of the frequencies found for the first and second spectra. Successive spectra
use a three-point linear least squares extrapolation of frequencies found for
the previous three spectra. This procedure was tested on several sets of very
clean data and was shown to produce extremely good results. However, when
subjected to data which contained much noise, fading, and/or aliasing of spin
lines, the procedure frequently failed. More work was needed to overcome these
problems.

Analyzing results after using the tracker in data that faded, showed that when
unable to pick any frequencies, track was lost. To correct this problem, it
was felt that more interactivity between the user and the program was needed.
Therefore an algorithm which checked for the absence of candidate peaks was
implemented. If no peaks are found for multiples of the calculated candidate
spin frequency, the program then asked the user to enter the spin frequency for
that particular spectrum. This approach solved the problem but also introduced
another., When fading occurred for large periods, the user is queried much too
frequently to supply the correct spin frequency. Since it is not necessary to
calculate a spin frequency for every spectrum (as interpolation could be used
afterward) selective processing was implemented in the algorithms. In this
approach the user selects the portions of data he wants to process, leaving out
those where fading is severe. This new approach also has the advantage of
leaving out those portions where noise obscures the spin frequency lines.
Another problem that arose when testing these algorithms occurred at the
crossover point of aliased spin frequency lines. Analyzing the data it was
found that, when crossing occurred, the tracker found at least two peaks in the
vindow; and if the rate of change was small, it sometimes lost track. Since
this problem does not occur often in each run, the algorithm was modified to
prompt the user to select between the candidate peaks. The selection is kept
a8 simple as possible, such that just a quick glance at the doppler plot will
usually suggest to the user which is the correct peak to select. This
approach also solved the problem of spurious noisy spikes in the search window
by the spin frequency peaks. Finally, as a check to the spin frequencies
obtained, the algorithms were further modified for selective application to the
data in reverse order. Results of forward and backward processing could then
be checked by the user for consistency.

Testing of the sets of data selected was performed and the results obtained
agreed with the results an experienced analyst would have obtained by doing it
manually. These results are shown in Appendix B.

For Data Set 1, the two problems encountered are noise and fading. Noise,
being especially severe at the beginning and at the end of the rum, will be
avoided by skipping processing in these areas. Fading is more severe from 55
to 77 seconds; therefore this part is not processed. Once the run is completed
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in the range from 10 to 55 seconds, the results shown are satisfactory and they
agree with the results obtained by manual calculation of the spin frequencies.

Also in Appendix B, runs on Dats Sets 2 and 3 are shown. Data Set 2 shows some
fading, and Data Set 3 shows crossover of spin lines. Both runs were
successful, and the results shown agree with manual calculations performed on
the doppler plots.

KNOWLEDGE BASED SYSTEM DEVELOPMENRT

Since the problem of noise, fading, and crossover of spin multiples often
require more experienced analysis, consideration was given to making the
developed software more “user friemdly’ for easier application by a more novice
analyst. After detailed analysis of the entire process, it was decided that
implementation of a software superstructure, based on a generalized knowledge-
based system (KBS), would normally produce better results. 41, [5] The process
was, therefore, broken down into KBS”s three primary elements:

o The interface.
o The cognitive engine.
e The knowledge base (as seen in Figure 17).

The interface, as seen in Figure 18 (which breaks down into external data,
user, and expert interface), primarily functions as the user’s two-way
communication link to the expert knowledge modules and fact files which
comprise the knowledge base. The external data interface is first used to
create the fact files, where the current information to be processed is stored.
The user interface then utilizes statistical and expert information, stored in
the expert knowledge modules, to guide the user step by step through the
process. These modules contain statistical averages from previously successful
reductions, suggested defaults, and descriptions of what is happening at every
stage of the reduction. Further, each user input is parsed and analyzed for
content so that part or all of this information is available even though a
numeric input is requested. This algorithm is listed as subroutine CONVER in
Appendix A. Statistics on the current reduction sre also available to the
user, and are used to update the permanent statistics if the user feels the
process was successful. Finally, the expert user interface duplicates the user
interface, except for the capability of altering the expert knowledge module.

The cognitive engine, as seen in Figure 19, is the active processing element
containing the generator and evaluator functions, as well as the inference and
reasoning algorithms that interact with the current problem state. Candidate
8pin returns are first generated as the largest returns in a given line, where
the number generated is generally equal to the number of spin traces that do
not alias. As mentioned previously, this function is based on the heuristic
that most spin multiples present will probably constitute the larger returnms,
with most power contained in the lower, unaliased multiples. The evaluator
function then works like the analyst, using a small search window to locate a
spin return. The window center is first extrapolated to the expected areas of
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the largest multiples, on each side of the spectrum, and then to successive
lover multiples if a peak is not found. Problems of clutter, aliasing, and
finding no peaks are then handled interactively through the use of the
inference and ressoning algorithms. For example, if no peak (or more than one
peak) is found, tracking is halted and the user is made aware of the problem
and the location. The user then has the option of allowing the process to make
its best guess, based on the current state of the problem, or to enter an
overriding location. Statistics are also compiled on the number and nature of '
such interruptions, for the purpose of later advising the user in the event
results are unsatisfactory. For instance, finding multiple peaks more often
than not might indicate that a smaller search window would have greater
success. In the event that an inexperienced snalyst has exhausted the
resources of the process and is still unsatisfied, presentation of results and
statistics to a trained analyst can usually gain an expeditious solution.

CONCLUSION

The resulting product of this research contsins many heuristic-based features,
used by trained analysts in processing spin information, including forward,
backward, segmented processing, and extraneous frequency rejection. It is
worth noting that, collectively, it has made a significant advance in obtaining
spin information for the subject target. The process successfully tracks the
spin frequency through fading, clutter, and the aliasing of higher spin
multiples back onto lower spin multiples with better than 90 percent
reliability in routine reductions. Primarily, this was achieved by placing the
techniques of the highly trained analyst into the process and at the immediate
disposal of the inexperienced analyst. Routine processing of these parameters
can novw be performed in less than a tenth of the time previously required by a
trained analyst. The analyst’s capability to update the expert knowledge
modules also reduces future reduction time by making inexperienced analysts
even less dependent on their presence.
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